231 research outputs found

    Fast Stereo Matching by Iterated Dynamic Programming and Quadtree Subregioning

    Get PDF
    The application of energy minimisation methods for stereo matching has been demonstrated to produce high quality disparity maps. However the majority of these methods are known to be computationally expensive, requiring minutes or even hours of computation. We propose a fast minimisation scheme that produces strongly competitive results for significantly reduced computation, requiring only a few seconds of computation. In this paper, we present our iterated dynamic programming algorithm along with a quadtree subregioning process for fast stereo matching

    Embedded Voxel Colouring

    Get PDF
    The reconstruction of a complex scene from multiple images is a fundamental problem in the field of computer vision. Volumetric methods have proven to be a strong alternative to traditional correspondence-based methods due to their flexible visibility models. In this paper we analyse existing methods for volumetric reconstruction and identify three key properties of voxel colouring algorithms: a water-tight surface model, a monotonic carving order, and causality. We present a new Voxel Colouring algorithm which embeds all reconstructions of a scene into a single output. While modelling exact visibility for arbitrary camera locations, Embedded Voxel Colouring removes the need for a priori threshold selection present in previous work. An efficient implementation is given along with results demonstrating the advantages of posteriori threshold selection

    Liver Segmentation from CT Images Using a Modified Distance Regularized Level Set Model Based on a Novel Balloon Force

    Get PDF
    Organ segmentation from medical images is still an open problem and liver segmentation is a much more challenging task among other organ segmentations. This paper presents a liver egmentation method from a sequence of computer tomography images.We propose a novel balloon force that controls the direction of the evolution process and slows down the evolving contour in regions with weak or without edges and discourages the evolving contour from going far away from the liver boundary or from leaking at a region that has a weak edge, or does not have an edge. The model is implemented using a modified Distance Regularized Level Set (DRLS) model. The experimental results show that the method can achieve a satisfactory result. Comparing with the original DRLS model, our model is more effective in dealing with over segmentation problems

    Deep Learning based HEp-2 Image Classification: A Comprehensive Review

    Get PDF
    Classification of HEp-2 cell patterns plays a significant role in the indirect immunofluorescence test for identifying autoimmune diseases in the human body. Many automatic HEp-2 cell classification methods have been proposed in recent years, amongst which deep learning based methods have shown impressive performance. This paper provides a comprehensive review of the existing deep learning based HEp-2 cell image classification methods. These methods perform HEp-2 image classification at two levels, namely, cell-level and specimen-level. Both levels are covered in this review. At each level, the methods are organized with a deep network usage based taxonomy. The core idea, notable achievements, and key strengths and weaknesses of each method are critically analyzed. Furthermore, a concise review of the existing HEp-2 datasets that are commonly used in the literature is given. The paper ends with a discussion on novel opportunities and future research directions in this field. It is hoped that this paper would provide readers with a thorough reference of this novel, challenging, and thriving field.Comment: Published in Medical Image Analysi

    Track-before-detect Algorithm based on Cost-reference Particle Filter Bank for Weak Target Detection

    Full text link
    Detecting weak target is an important and challenging problem in many applications such as radar, sonar etc. However, conventional detection methods are often ineffective in this case because of low signal-to-noise ratio (SNR). This paper presents a track-before-detect (TBD) algorithm based on an improved particle filter, i.e. cost-reference particle filter bank (CRPFB), which turns the problem of target detection to the problem of two-layer hypothesis testing. The first layer is implemented by CRPFB for state estimation of possible target. CRPFB has entirely parallel structure, consisting amounts of cost-reference particle filters with different hypothesized prior information. The second layer is to compare a test metric with a given threshold, which is constructed from the output of the first layer and fits GEV distribution. The performance of our proposed TBD algorithm and the existed TBD algorithms are compared according to the experiments on nonlinear frequency modulated (NLFM) signal detection and tracking. Simulation results show that the proposed TBD algorithm has better performance than the state-of-the-arts in detection, tracking, and time efficiency

    Circular Shortest Paths by Branch and Bound

    Get PDF
    Shortest path algorithms are used for a large variety of optimisation problems in network and transportation analysis. They are also used in image analysis for object segmentation, disparity estimation, path finding and crack detection. Sometimes the topology of the problem demands that the path be circular. Such circular path constraints occur in polar object segmentation, disparity estimation for panoramic stereo images and in shortest paths around a cylinder. In this paper we present a new efficient algorithm for circular shortest path determination on a uu-by-vv trellis in O(u1.6v)O(u^{1.6} v) average time. We impose a binary search tree on the set of path endpoints and use a best-first Branch and Bound search technique to efficiently obtain the global minimum circular path. The typical running time of our circular shortest path algorithm on a 256×\times256 image is in the order of 0.1 seconds on a 1GHz Dell P3 workstation under the Linux operating system. Applications to crack detection and object segmentation are presented
    • …
    corecore